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Abstract

We provide a simplified proof of the random k-XORSAT satisfiability threshold
theorem. As an extension we also determine the full rank threshold for sparse ran-
dom matrices over finite fields with precisely k non-zero entries per row. This com-
plements a result from [Ayre, Coja-Oghlan, Gao, Müller: Combinatorica 2020]. The
proof combines physics-inspired message passing arguments with a surgical moment
computation. MSc: 60B20, 15B52
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1 Introduction
A random k-XORSAT instance consists of a conjunction of random XOR clauses with
k literals. The goal of the well-known random k-XORSAT problem is to determine the
maximum number of XOR-clauses in a random k-XORSAT formula such that the formula
remains satisfiable with high probability (w.h.p. for short). This threshold was derived for
the random 3-XORSAT problem (k = 3) by Dubois and Mandler [14]. They stated that
their proof extends to the general case. But this turned out to be far from straightforward.
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Only more than ten years later did Pittel and Sorkin [26] publish the first complete yet
complicated proof based on moment computations. Their proof spans well over 30 pages
and resorts to computer-assistance. Subsequently, Ayre, Coja-Oghlan, Gao and Müller [4]
published a different but still complicated proof based on coupling arguments.

In this work we provide a relatively short proof for the random k-XORSAT satisfiabil-
ity threshold. Our proof is based on a novel combination of physics-inspired ‘quenched’
arguments and ‘annealed’ computations.

We start with a quenched argument. Using a message passing technique called Warn-
ing Propagation (‘WP’) we characterize typical solutions of random k-XORSAT instances.
Equipped with this characterization we then carry out a carefully truncated moment cal-
culation (‘annealed’ computation in physics jargon).

Let F = F k(n,m) be a random k-XORSAT instance consisting of n Boolean variables
and m random XOR-clauses with k literals, where the clauses are drawn independently
and uniformly from the set of all possible 2k

(
n
k

)
XOR-clauses of length k on n variables.

The k literals of a clause are drawn independently at random. The following theorem, first
established in [14] for k = 3 and in [26] for k > 3, provides the k-XORSAT satisfiablity
threshold.

Theorem 1. For k ≥ 3 and d > 0 let

Φd,k(α) = exp
(
−dαk−1

)
+ dαk−1 − d(k − 1)

k
αk − d

k
and (1.1)

dk = sup

{
d > 0 : max

α∈[0,1]
Φd,k(α) = 1− d/k

}
. (1.2)

For any ε > 0 w.h.p. the random k-XORSAT formula F is

(i) satisfiable if m ≤ (1− ε)dkn/k, (ii) unsatisfiable if m ≥ (1 + ε)dkn/k.

A k-XORSAT formula can naturally be translated to a linear system over F2 and
therefore it induces a random matrix over F2 where each column represents a variable and
each row a clause of the formula. Theorem 1 admits a natural generalisation to matrices
over finite fields beyond F2.

Thus, let q ≥ 2 be a prime power and let A = (Aij)i,j≥1 be an infinite matrix with non
zero entries Aij ∈ Fq \{0}. Further, we choose a sequence (ei)i≥1 of independent uniformly
random subsets of [n] of size |ei| = k. Define the randomm×n-matrixA = A(k,m, n, q,A)
over Fq by letting

Aij = Aij1{j ∈ ei} (i ∈ [m], j ∈ [n]).

For q = 2 we obtain the matrix induced by a k-XORSAT formula.

Theorem 2. For all k ≥ 3, all prime powers q ≥ 2 and all infinite matrices A composed
of non-zero elements of Fq the following hold. Let dk be the threshold from (1.2). Then for
any ε > 0,

(i) if m ≤ (1− ε)dkn/k, then A has full row rank w.h.p.
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(ii) if m ≥ (1 + ε)dkn/k, then A fails to have full row rank w.h.p.

Theorem 2 complements [4, Theorem 1.1], where only random matrices with identically
distributed rows were considered, while in Theorem 2 random matrices may proscribe dif-
ferent non-zero entries for each row. We proceed to outline the proof strategy of Theorem 2.

2 Proof strategy
The main task is to prove the positive statement Theorem 2(i). Assume that for m <
(1 − ε)dkn/k w.h.p. the values of a random kernel vector σ ∈ kerA are approximately
‘balanced’ such that each value s ∈ Fq appears in σ about n/q times. Via a moment
calculation we could show that the expected number of such balanced vectors σ ∈ kerA
equals (1 + o(1))qn−m. Thus | kerA| = (1 + o(1))qn−m w.h.p. and A has full row rank
w.h.p. via the second moment method.

Hence, it remains to show that a typical kernel vector σ ∈ kerA is balanced. However,
we are not able to prove directly that a random kernel vector is balanced w.h.p. Instead, we
will use a technique called Warning Propagation (‘WP’) to extract a quantitative picture
of the kernels vectors’ structure via a ‘quenched’ argument.

Pinning. We begin with an auxiliary result from [6]. Let A be an M × N matrix over
finite field Fq. We alter the matrix A using a technique called pinning: We add a few rows
to the matrix with exactly one non-zero entry at a random position which thus pin the
corresponding variables to zero. This randomised pinning operation, devised in this form
in [6], mostly removes ‘short linear relations’ from the matrix and actually works on any
arbitrary matrix.

Following [6] we call a set of columns J a relation of A if there exists a linear combination
of rows with J as the set of non zero entries. Hence J is a relation of A if there exists a
vector y ∈ FMq such that supp(y>A) is a non-empty subset of J . For a k-XORSAT formula
these relations can be interpreted as derived XOR-clauses.

Further we call a column or variable frozen in A, if the singleton {j} is a relation of
A. Thus, j is frozen iff every kernel vector is zero on position j. We denote F(A) as the
set of frozen coordinates in A and say that J 6= ∅ is a proper relation of A if J \ F(A) is
a relation of A. Finally, we say that A is (δ, `)-free if A possesses fewer than δ

(
N
h

)
proper

relations I of size |I| = h for any 2 ≤ h ≤ `. In other words, a matrix is (δ, `)-free if it
contains only few short relations that are not exclusively composed of frozen coordinates.

For an integer t ≥ 0 let A[t] denote a matrix obtained from A by adding t new rows,
each of which contains a single non-zero entry at a random position.

Lemma 1 ([6, Proposition 2.4]). For any δ > 0, ` > 0 there exists T0 = O(`3/δ4) > 0 such
that for any T ≥ T0 and any matrix A for a random t ∈ [T ] we have P [A[t] is (δ, `)-free] >
1− δ.
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Thus, with T = dlog ne, the matrix A† = A[t] is (ω−1, ω)-free with ω = dlog log ne
w.h.p. This allows us to characterize the set of frozen variables in A† in terms of the
Warning Propagation scheme.

Warning Propagation. We introduce WP for a general M ×N matrix A, not just for
A†. The matrix A naturally induces a bipartite graph G(A) called the Tanner graph with
two different kind of vertices, variable nodes and check nodes. The set of variable nodes
and check nodes coincide with the columns and rows of the matrix.

We define the WP scheme following [5]. The goal is to characterize the set of variables
frozen in the matrix A in terms of local interactions between variable nodes and their
adjacent checks using WP messages. Each edge vjai is endowed with two messages, one
sent by the variable node vj to the factor node ai and one from the factor node to the
variable node. Each message takes a symbolic value {u, f} to represent ‘unfrozen’ and
‘frozen’.

The standard messages mvj→ai(A) encompass the actual effects of adjacent variables and
factors emerging of the matrix. Let A \ {ai} be the matrix obtained from A by deleting
the row ai. Similarly A \ {∂vj \ {ai}} is the matrix where every other row adjacent to vj
except ai is removed. The standard message mvj→ai(A) = f indicates that the variable vj
is frozen in the matrix A \ {ai}. Similarly, mai→vj(A) = f expresses that vj needs to be
frozen in order to satisfy the check ai and thus is frozen in A \ {∂vj \ {ai}}.

Warning Propagation update provides a heuristic fixed point equation for these mes-
sages:

mvj→ai =

{
f if ∃ah ∈ ∂vj \ {ai} : mah→vj = f,

u otherwise,
(2.1)

mai→vj =

{
f if ∀vh ∈ ∂ai \ {vj} : mvh→ai = f,

u otherwise.
(2.2)

The idea is that freezing is caused by local effects only. For instance vj is expected to
be frozen in A \ {ai} iff some other check ah freezes vj via a standard message.

The fixed point equations (2.1),(2.2) are easily verified for matrices with acyclic Tanner
graphs. However, they do not hold for general matrices. Nonetheless, we show that for
the random matrix A† (2.1),(2.2) hold for all but o(n) adjacent pairs ai, vj w.h.p. and that
the messages correctly identify the set of frozen variables. Furthermore, we prove that in
most kernel vectors the values of the unfrozen variables are approximately ‘balanced’.

Quenched analysis. Recall that our goal is to show that a random kernel vector σ† ∈
kerA† is approximately balanced w.h.p. Since we know that this holds for the unfrozen
variables due to the WP-results, we only need to show that the fraction of frozen variables
is α = o(1) w.h.p. For this purpose we will extract detailed quantitative information about
combinations of messages belonging to an edge as well as the number of certain labels.
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Our next goal is to derive this information in terms of the (as of yet) unknown random
variable α.

We denote by ` = (`uu, `uf, `fu, `ff) ∈ Z4
≥0 a specification of message combinations, where

`uf equals the number of edges with message combination u (incoming) f (outgoing), etc.
Define ∆` as the number of variable nodes that receive/send out messages according to `.
Analogously, let Γ` be the number of factor nodes that receive/send according to `.

We are going to estimate |∆`| and |Γ`| in terms of the fraction α of frozen variables using
the hypothesis that the incoming messages at a check node ai are essentially independent.
We can derive predictions Γ̄`(α) and ∆̄`(α) in terms of the (obvious) Galton Watson tree
that mimics the Tanner graph ofA and show that these approximations are accurate w.h.p.

Proposition 1. Let d > 0, k ≥ 3. Then w.h.p. for all but o(n) adjacent pairs vj, ai the
fixed point equations (2.1),(2.2) hold. Moreover for all `

E
∣∣|∆`| − n∆̄`(α)

∣∣+ E
∣∣|Γ`| −mΓ̄`(α)

∣∣ = o(n).

Finally, for all but o(n) exceptions variable vj is frozen iff mai→vj = f for some ai ∈ ∂vj.

The proof of Proposition 1 is based on coupling arguments and does not reveal the
likely value of α.

Annealed argument. In the next and last step we aim to show that α = o(1) w.h.p.
if d < (1 − ε)dk. The present annealed computation differs significantly from the prior
works of [14, 26]. These prior works were based on blunt moment computations that
generally have the disadvantage that even extremely rare events contribute. These large
deviations result in intricate and technically demanding analytical optimisation problems.
In contrast, thanks to Proposition 1 we already know the typical shape of kernel vectors
and are therefore left with a straightforward and elegant computation.

To elaborate, we proceed in two steps. First, we estimate the expected number of α-WP
fixed points with an α-fraction of frozen variables, which turns out to be sub-exponential
for any 0 ≤ α ≤ 1. In the next step we estimate the number Xα of kernel vectors
σ† ∈ ker(A†) that extend a certain α-WP fixed point (frozen variable set to zero, unfrozen
variables balanced). Proposition 1 then implies that | kerA†| ∼ Xα w.h.p. Let D be the
σ-algebra generated by the degree-sequence of the Tanner graph. The following proposition
gives a first moment upper bound on Xα for any 0 ≤ α ≤ 1 in terms of the function Φd,k
from (1.1).

Proposition 2. Let d > 0, k ≥ 3. W.h.p. for all α ∈ [0, 1] we have

E[Xα | D] ≤ qnΦd,k(α)+o(n).

For d < dk the function Φd,k has its unique maximum at α = 0 and qnΦd,k(0) = qn−dn/k.
Thus, we can derive the estimate α = o(1) w.h.p. and finally we can deduce that w.h.p.
most kernel vectors σ† ∈ ker(A†) are ‘balanced’. This finishes our proof strategy outlined
at the beginning.
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