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Abstract

An n-vertex graph is Hamiltonian if it contains a cycle that covers all of its vertices
and it is pancyclic if it contains cycles of all lengths from 3 up to n. A celebrated
meta-conjecture of Bondy states that every non-trivial condition implying Hamil-
tonicity also implies pancyclicity (up to possibly a few exceptional graphs). We show
that every graph G with κ(G) > (1+o(1))α(G) is pancyclic. This extends the famous
Chvátal-Erdős condition for Hamiltonicity and proves asymptotically a 30-year old
conjecture of Jackson and Ordaz.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-052

1 Introduction
The notion of Hamiltonicity is one of most central and extensively studied topics in Combi-
natorics. Since the problem of determining whether a graph is Hamiltonian is NP-complete,
a central theme in Combinatorics is to derive sufficient conditions for this property. A clas-
sic example is Dirac’s theorem [14] which dates back to 1952 and states that every n-vertex
graph with minimum degree at least n/2 is Hamiltonian. Since then, a plethora of inter-
esting and important results about various aspects of Hamiltonicity have been obtained,
see e.g. [1, 11, 12, 13, 19, 26, 27, 28, 32], and the surveys [21, 30].

Besides finding sufficient conditions for containing a Hamilton cycle, significant atten-
tion has been given to conditions which force a graph to have cycles of other lengths.
Indeed, the cycle spectrum of a graph, which is the set of lengths of cycles contained in
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that graph, has been the focus of study of numerous papers and in particular gained a lot
of attention in recent years [2, 3, 15, 20, 22, 25, 29, 31, 35]. Among other graph parameters,
the relation of the cycle spectrum to the minimum degree, number of edges, independence
number, chromatic number and expansion of the graph have been studied.

We say that an n-vertex graph is pancyclic if the cycle spectrum contains all integers
from 3 up to n. In the cycle spectrum of an n-vertex graph, it is usually hardest to
guarantee the existence of the longest cycle, i.e. a Hamilton cycle. This intuition was
captured in Bondy’s famous meta-conjecture [6] from 1973, which asserts that any non-
trivial condition which implies Hamiltonicity, also implies pancyclicity (up to a small class
of exceptional graphs). As a first example, he proved in [7] an extension of Dirac’s theorem,
showing that minimum degree at least n/2 implies that the graph is either pancyclic or
that it is the complete bipartite graph Kn

2
,n
2
. Further, Bauer and Schmeichel [5], relying

on previous results of Schmeichel and Hakimi [34], showed that the sufficient conditions
for Hamiltonicity given by Bondy [8], Chvátal [10] and Fan [18] all imply pancyclicity, up
to a certain small family of exceptional graphs.

Another classic condition which implies Hamiltonicity is given by the famous theorem
of Chvatál and Erdős [11]. It states that if the connectivity of a graph G is at least as
large as its independence number, that is, κ(G) ≥ α(G), then G is Hamiltonian. The
pancyclicity counterpart of this result has also been investigated - see, e.g., [4] and the
surveys [23, 33]. In fact, in 1990, Jackson and Ordaz [23] conjectured that G must be
pancyclic if κ(G) > α(G), which if true would confirm Bondy’s meta-conjecture for this
classical instance. One can use an old result of Erdős [16] to show pancyclicity if κ(G)
is large enough function of α(G). A first linear bound on κ(G) was given only in 2010
by Keevash and Sudakov [25], who showed that κ(G) ≥ 600α(G) is enough. In this
paper, we resolve the conjecture of Jackson and Ordaz asymptotically, by showing that
κ(G) > (1 + o(1))α(G) is already enough to guarantee pancyclicity.

Theorem 1. Let ε > 0 and let n be sufficiently large. Then, every n-vertex graph G for
which we have κ(G) ≥ (1 + ε)α(G) is pancylic.

Next we briefly discuss some of the key steps in the proof of this theorem. It will be
convenient for us to consider different ranges of cycle lengths whose existence we want
to show, and for each range we have a slightly different approach to deal with. But
in general, in order to find these different cycle lengths we will combine various tools
on shortening/augmenting paths and finding consecutive path lengths between two fixed
vertices.

For example, for finding consecutive path lengths we crucially use that since κ(G) >
α(G), it must be that G contains triangles - moreover, it contains a path with triangles
attached to many of its edges (see Definition 2), which trivially implies the existence of many
consecutive path lengths between the endpoints of such a path. For shortening/augmenting
paths, we also introduce new tools. One of them is used to shorten paths using only the
minimum degree of the graph (Lemma 6), while another one augments paths using both
the independence and connectivity number, and is given in the complete version of the
paper. Furthermore, we will also use a novel result proven in [15] using the Gallai-Milgram
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theorem, in order to shorten paths using the independence number of the graph. In our
paper, we present these tools, together with some other useful results of a similar flavour.
The general proof strategy is to find a cycle of appropriate length which consists of two
paths, one of which has many edges to which triangles are attached. Then we apply our
shortening/augmenting results to the other path. Combining the consecutive path lengths
from the first path with the path lengths obtained from the second path we get all possible
cycle lengths.

2 Cycles with triangles and path shortening
In this section we will give a taste of the methods we use. We will show two simple results
– first we show how to obtain a cycle with many triangles, and second, in Lemma 6 we
show how to shorten a path between two vertices only using the minimum degree of the
graph. We start with the definition of a cycle with many triangles.

Definition 2. Define the graph Cr
` to be the graph formed by a cycle v1v2 . . . vlv1 of length

` with the additional edges v1v3, v3v5, . . . , v2r−1v2r+1 (if r = 0, then it is just a cycle of
length l). We will refer to this as a cycle of length ` with r triangles. Similarly define P r

`

and refer to it as a path of length l with r triangles, where P 0
0 is just a vertex.

The following is an easy starting point for the existence of the graphs Cr
` with appropriate

parameters, as subgraphs in graphs G with κ(G) ≥ α(G).

Lemma 3. Every n-vertex graph G with κ(G) ≥ α(G) contains a Cr
l for all r such that

0 ≤ r ≤ κ(G)−α(G)
2

and some l with l − 2(r + 1) ≤ max
(

n
κ(G)−2r+1

, n
κ(G)−1

)
. In particular,

it contains a P r
2r for all such r.

Proof. We will first show that G must always contain a P r′

2r′ for r′ :=
⌊
κ(G)−α(G)

2

⌋
- we

construct such a path greedily. Suppose that we have the vertices v1v2v3 . . . v2i+1 which form
a P i

2i, so that the edges v1v3, . . . , v2i−1v2i+1 are also present. Provided that i < r′, we can
augment this path as follows. Consider the set S := N(v2i+1)\{v1, . . . , v2i} - by assumption,
this has size at least δ(G) − 2i > κ(G) − 2r′ ≥ α(G). Therefore, it must contain an edge
v2i+2v2i+3. Clearly, v2i+1v2i+2v2i+3 forms a triangle and thus, v1v2v3 . . . v2i+1v2i+2v2i+3 is a
P i+1
2i+2. Continuing with this procedure until i = r′, gives the desired P r′

2r′ .
Now, fix r with the given condition. If r = 0, then take an edge xy in G. By Menger’s

theorem, there exist at least κ(G) internally vertex-disjoint xy-paths in G and thus, at
least κ(G)− 1 of these are not the edge xy. Therefore, there is such a path with at most

n
κ(G)−1 +2 vertices, which together with the edge xy, then creates a cycle of length at most

n
κ(G)−1 +2. If r ≥ 1, by the previous paragraph, G contains a P r

2r - let x, y be its endpoints.
By Menger’s theorem, there exist at least κ(G) internally vertex-disjoint xy-paths in G.
Since at most 2r − 1 of these intersect P r

2r \ {x, y}, there exists one which is disjoint to
P r
2r \{x, y} and contains at most n

κ(G)−2r+1
internal vertices. This produces the desired Cr

l .
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We can also use this type of cycles to extend the celebrated Chvátal-Erdős theorem [11].

Theorem 4 (Chvátal-Erdős [11]). If for a graph G we have that κ(G) ≥ α(G), then G is
Hamiltonian.

Our resut states that if the Chvátal-Erdős condition is satisfied, then we can find a Hamil-
ton cycle with a certain number of triangles, depending on the discrepancy between the
connectivity and the independence number.

Theorem 5. Every n-vertex graph G such that κ(G) ≥ α(G) contains a Cr
n with r =⌊

κ(G)−α(G)
2

⌋
.

Proof. Suppose for contradiction that some ` < n is maximal such that there exists a
copy of Cr

` in G. Note that ` exists by Lemma 3. Order the cycle as v1v2 . . . v`v1 so
that the edges v1v3, v3v5, . . . , v2r−1v2r+1 are also present. Since ` < n, there is a vertex v
not in Cr

l . Moreover, as κ(G) ≥ α(G) + 2r, there exist α(G) paths contained in V (G) \
{v1, . . . , v2r}, all of which go from v to Cr

l and are vertex-disjoint apart from the initial
vertex v. Let us denote these paths as Pi1 , Pi2 , . . . so that vj = Pj ∩ Cr

l . Consider the
set S := {vi1+1, vi2+1, . . .} with indices taken modulo l, so that |S| ≥ α(G). Observe (as
illustrated in Figure 1) that then there must be an edge contained in S ∪{v} and that any
such edge can be used to augment Cr

l to a Cr
l′ with l′ > l, contradicting the maximality of

l.

.v1

.
v2r+1

..

..

..

..
.
.
.
. .v
.

.

.

.vik+1

vik

vil
vil+1

Figure 1: An illustration of how an edge between two elements vik+1, vil+1 of S can be used
to construct a new Cr

l′ .

Now we show a result which uses only the minimum degree of the graph to shorten a
path between two vertices. Among other shortening/augmenting tools in our paper, this
is an important building block for our proof.

Lemma 6. Let G be an n-vertex graph, δ := δ(G) and P a path in G with endpoints x, y
such that |P | > 20n/δ. Then there is an xy-path P ′ such that |P | − 20n/δ ≤ |P ′| < |P |.
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Proof. Suppose for sake of contradiction that no such path P ′ exists. Let P := v1v2 . . . vl−1vl
with v1 = x, vl = y and let <P denotes the given ordering of the path P as v1 <P v2 <P

. . . <P vl. Since |P | > 10n/δ, we can partition P into sub-paths Q1, Q2, . . . , Qk such that
|Qk| ≤ 10n/δ and |Qi| = 10n/δ for all i < k. Moreover, we have k =

⌈
|P |

10n/δ

⌉
. Now,

consider the vertices in Q1 and take a subset Q′1 ⊆ Q1 of size b|Q1|/3c ≥ 3n/δ such that no
two vertices in Q′1 are at distance at most 2 in P . Consider then the set of edges incident to
Q′1, that is, E[Q′1, V (G)]; by the minimum degree condition, there are at least |Q′1| · δ ≥ 3n
such edges.

Now, clearly there cannot exist an edge spanned by Q1 which does not belong to P since
this edge could be used to shorten P by at most |Q1| ≤ 10n/δ. Hence, e(Q′1, Q1) ≤ 2|Q′1|.
Similarly, the following must hold.

Claim. e(Q′1, V (G) \ P ) ≤ n− |P |.

Proof. Suppose otherwise. Then there is a vertex v ∈ V (G) \P with at least 2 neighbours
in Q′1 - denote these by u,w. Note that since by construction u,w are at distance at least
2 and at most |Q1| ≤ 10n/δ in P , this is a contradiction, since it produces the desired P ′
by substituting the sub-path of P between u and w by the path uvw.

To give an upper bound on the total number of edges incident to Q′1 which are contained
in V (P ), we also use the following claim.

Claim. For all i > 1, we have e(Q′1, Qi) < |Q′1|+ |Qi|.

Proof. Suppose otherwise. This implies that there is a cycle in G[Q′1, Qi] and hence, there
must exist two crossing edges in this bipartite graph, that is, edges a1b1 and a2b2, with
a1 <P a2 and both in Q′1, and b1 <P b2 both in Qi. These can clearly be used to shorten
P (see Figure 2) by at most |Q1| + |Qi| ≤ 20n/δ, which is a contradiction as it produces
the desired P ′.

The above claim implies that∑
i>1

e(Q′1, Qi) <
∑
i>1

(|Q′1|+ |Qi|) ≤ (k − 1)|Q′1|+ (|P | − |Q1|) < 2|P | − 2|Q′1|.

y..x
a1 a2 b2b1
. . ..

Figure 2: Shortening of the path P using the crossing edges a1b1 and a2b2. The resulting
path is P ′ and is drawn in red.
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To conclude, we now must have the following

e(Q′1, V (G)) = e(Q′1, Q1)+e(Q
′
1, V (G)\P )+

∑
i>1

e(Q′1, Qi) < 2|Q′1|+(n−|P |)+(2|P |−2|Q′1|) < 2n.

which contradicts the previous observation that e(Q′1, V (G)) ≥ 3n.
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